# Investigating the emergence, prevalence, and dispersal of antibiotic resistant *E. coli* infecting wild birds in Alaska

Andrew Ramey

US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508



## Acknowledgements



Jonas Bonnedahl

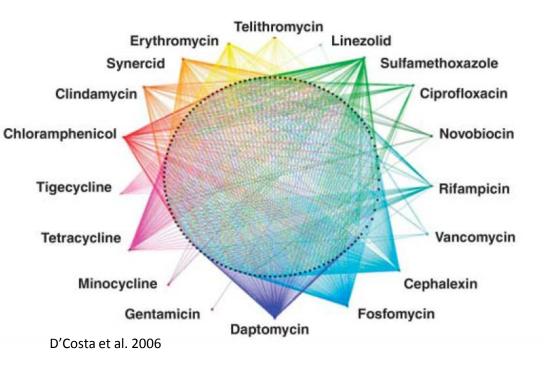


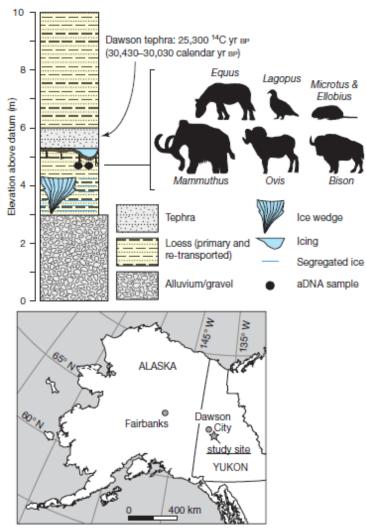
Björn Olsen



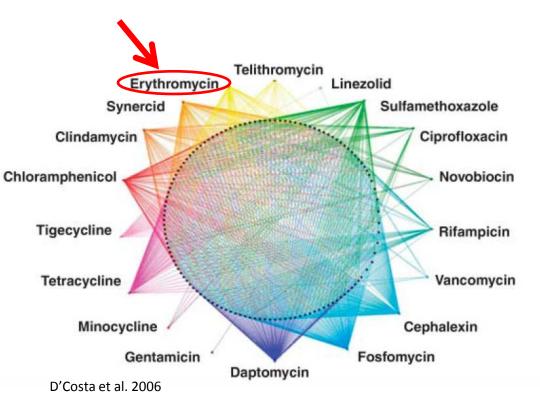


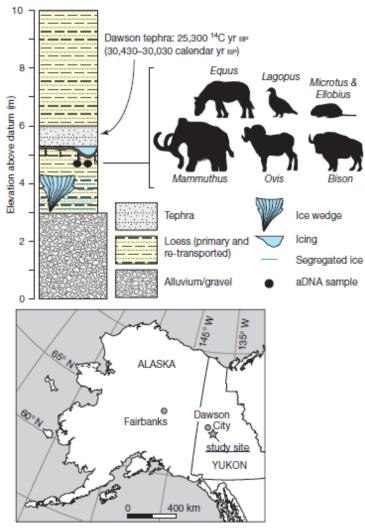
USGS Alaska Science Center John Reed Andy Reeves Lee Tibbits Matthew Smith



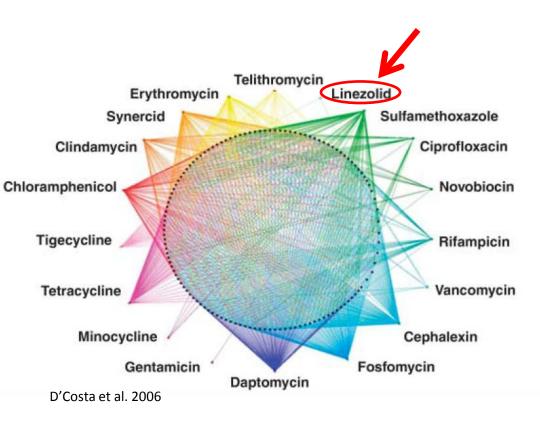


**Uppsala University** 

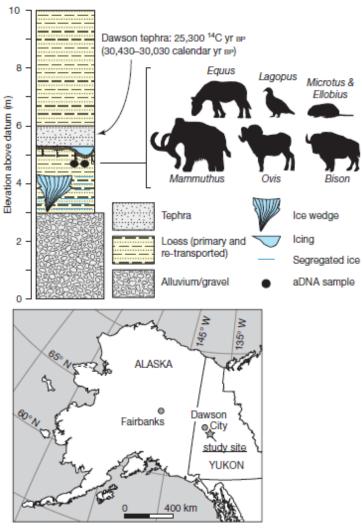
Clara Atterby Gabriel Gustafsson Hall Josef Järhult



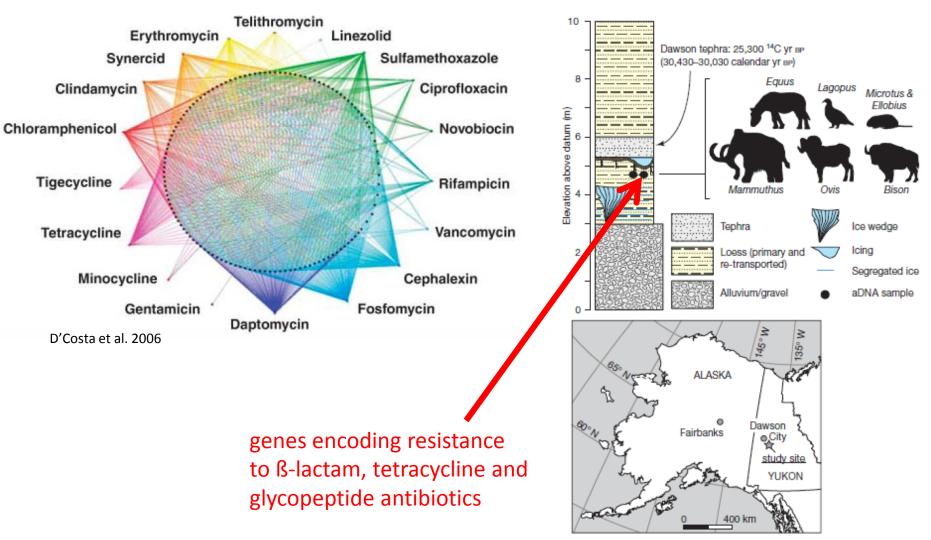


Swedish National Veterinary Institute Stefan Börjesson



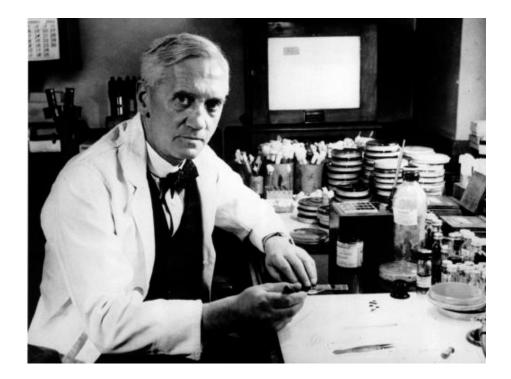


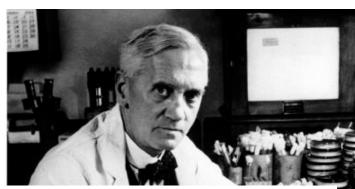

















## The New York Times

The World Wakes Up to the Danger of Superbugs

By THE EDITORIAL BOARD SEPT. 28, 2016



A technician scanning the X-ray of a patient suspected of having Tuberculosis. Justin Mott for The New York Times

HEALTH DRUGS

TIME

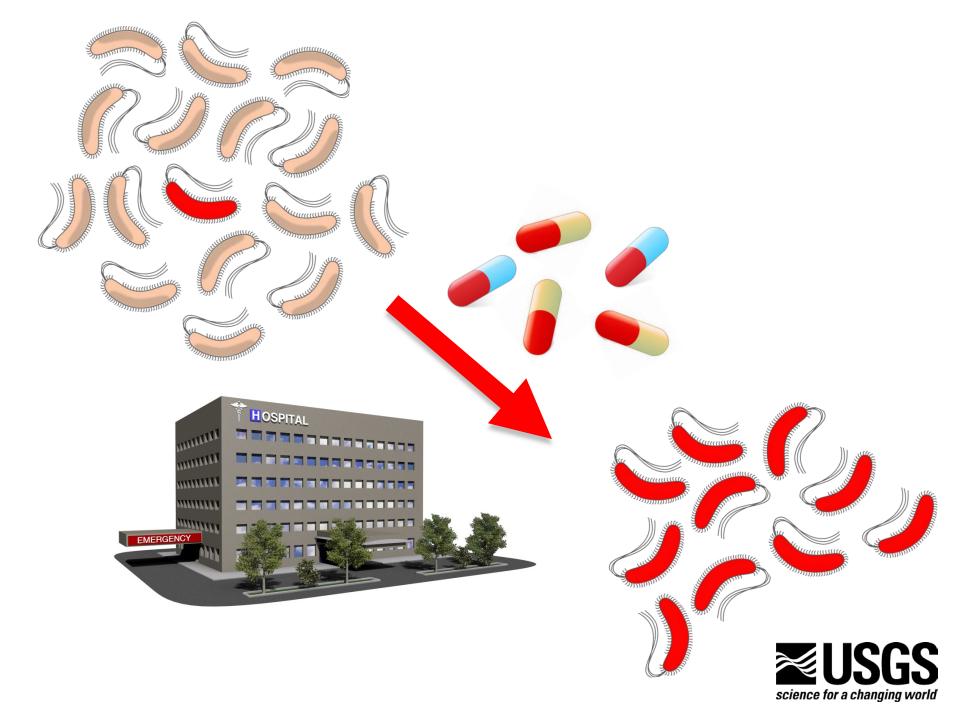
TIME

HEALTH DRUGS

Early Lead

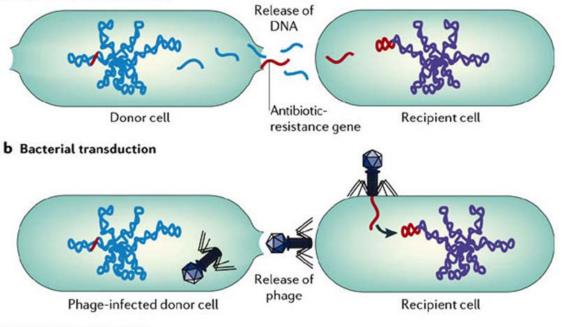
Farm Animals Are Now Resistant to a Last-Resort Antibiotic

Why Drug-Resistance Genes Are Showing Up In Smog

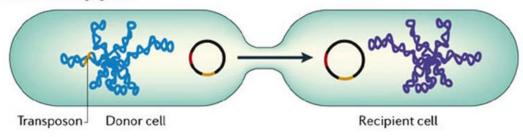

The Washington Post

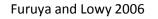
**Report: Studies reveal drugresistant super bacteria in Rio Olympics water venues** 




Several bodies of water in Rio that will be used both as leisure spots and Olympic event sites contain antibiotic-resistant super bacteria. (AP Photo/Silvia Izquierdo, File)






#### a Bacterial transformation



c Bacterial conjugation





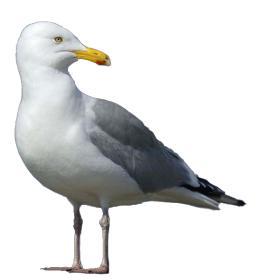


### High prevalence of antimicrobial-resistant genes and integrons in *Escherichia coli* isolates from Black-headed Gulls in the Czech Republic

M. Dolejska<sup>1</sup>, A. Cizek<sup>1</sup> and I. Literak<sup>2</sup>

Carriage of CTX-M type extended

spectrum β-lactamases (ESBLs) in gulls


Johan Stedt<sup>1</sup>, Jonas Bonnedahl<sup>2,3</sup>, Jorge Hernandez<sup>3</sup>, Jonas Waldenström<sup>1</sup>, Barry J. McMahon<sup>4</sup>, Conny Tolf<sup>1</sup>,

### RESEARCH

across Europe

Biörn Olsen<sup>3</sup> and Mirva Drobni<sup>3,5\*</sup>

Open Access





### High prevalence of antimicrobial-resistant genes and integrons in *Escherichia coli* isolates from Black-headed Gulls in the Czech Republic

M. Dolejska<sup>1</sup>, A. Cizek<sup>1</sup> and I. Literak<sup>2</sup>

### RESEARCH

# Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) in gulls across Europe

Johan Stedt<sup>1</sup>, Jonas Bonnedahl<sup>2,3</sup>, Jorge Hernandez<sup>3</sup>, Jonas Waldenström<sup>1</sup>, Barry J. McMahon<sup>4</sup>, Conny Tolf<sup>1</sup>, Björn Olsen<sup>3</sup> and Mirva Drobni<sup>3,5\*</sup>



Multilocus Sequence Typing Confirms Wild Birds as the Source of a *Campylobacter* Outbreak Associated with the Consumption of Raw Peas

Patrick S. L. Kwan,<sup>a</sup> Catherine Xavier,<sup>d</sup> Monica Santovenia,<sup>a</sup> Janet Pruckler,<sup>a</sup> Steven Stroika,<sup>a</sup> Kevin Joyce,<sup>a</sup> Tracie Gardner,<sup>c</sup> Patricia I. Fields,<sup>a</sup> Joe McLaughlin,<sup>d</sup> Robert V. Tauxe,<sup>b</sup> Collette Fitzgerald<sup>a</sup>

STUDY OF THE BACTERIAL CONTENT OF RING-BILLED GULL DROPPINGS IN RELATION TO RECREATIONAL WATER QUALITY

BENOÎT LÉVESQUE<sup>1</sup>\*, PIERRE BROUSSEAU<sup>2</sup>, FRANCE BERNIER<sup>3</sup>, ÉRIC DEWAILLY<sup>1</sup> and JEAN JOLY<sup>3</sup>

THE CONTAMINATION OF A MAJOR WATER SUPPLY BY GULLS (LARUS sp.)

**Open Access** 

CrossMark

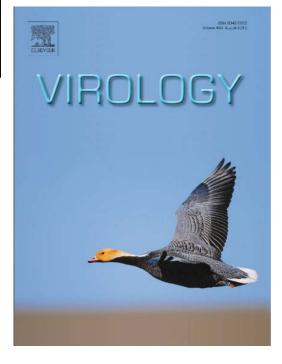
A STUDY OF THE PROBLEM AND REMEDIAL ACTION TAKEN

C. BENTON<sup>1</sup>, F. KHAN<sup>1</sup>, P. MONAGHAN<sup>2</sup>, W. N. RICHARDS<sup>1</sup> and C. B. SHEDDEN<sup>2</sup>



Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (*Anas acuta*) sampled throughout the North Pacific Basin

Andrew M. Ramey <sup>a,b,\*</sup>, Joel A. Schmutz <sup>a</sup>, John A. Reed <sup>a</sup>, Go Fujita <sup>c</sup>, Bradley D. Scotton <sup>d</sup>, Bruce Casler <sup>e</sup>, Joseph P. Fleskes <sup>f</sup>, Kan Konishi <sup>g</sup>, Kiyoshi Uchida <sup>h</sup>, Michael J. Yabsley <sup>b,i</sup>


Dispersal of H9N2 influenza A viruses between East Asia and North America by wild birds

Andrew M. Ramey<sup>a,\*</sup>, Andrew B. Reeves<sup>a</sup>, Sarah A. Sonsthagen<sup>a</sup>, Joshua L. TeSlaa<sup>b</sup>, Sean Nashold<sup>b</sup>, Tyrone Donnelly<sup>a</sup>, Bruce Casler<sup>c</sup>, Jeffrey S. Hall<sup>b</sup>

Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread

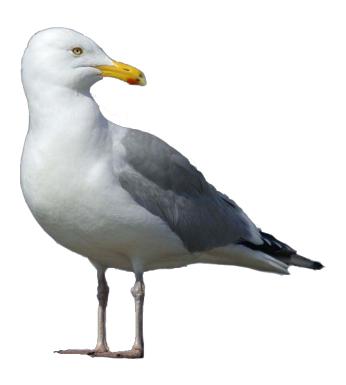
Andrew M. Ramey · Andrew B. Reeves · Haruko Ogawa · Hon S. Ip · Kunitoshi Imai · Vuong Nghia Bui · Emi Yamaguchi · Nikita Y. Silko · Claudio L. Afonso







### PLOS ONE


RESEARCH ARTICLE

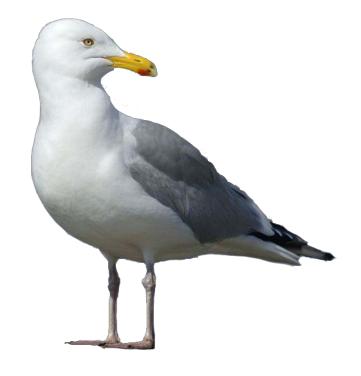
### Comparison of Extended-Spectrum β-Lactamase (ESBL) CTX-M Genotypes in Franklin Gulls from Canada and Chile

Jonas Bonnedahl<sup>1,2</sup>\*, Johan Stedt<sup>1</sup>, Jonas Waldenström<sup>1</sup>, Lovisa Svensson<sup>1</sup>, Mirva Drobni<sup>3</sup>, Björn Olsen<sup>3</sup>



| country        |        | % of <i>E. coli</i> |
|----------------|--------|---------------------|
| Spain          | - iiii | 75%                 |
| France         |        | 47%                 |
| Netherlands    |        | 38%                 |
| Chile          | *      | 30%                 |
| Czech Republic |        | 29%                 |
| England        | +      | 27%                 |
| Sweden         |        | 21%                 |
| Latvia         |        | 17%                 |
| Portugal       |        | 13%                 |
| Ireland        |        | 5%                  |
| Poland         |        | 1%                  |
| Denmark        |        | 0%                  |




Data taken from: Dolejska et al. 2007, Bonnedahl et al. 2009, Hernandz et al. 2013, Stedt et al. 2015



## Dissemination of Multidrug-Resistant Bacteria into the Arctic

Maria Sjölund,\*1 Jonas Bonnedahl,† Jorge Hernandez,‡ Stina Bengtsson,\* Gunilla Cederbrant,\* Jarone Pinhassi,‡ Gunnar Kahlmeter,\*§ and Björn Olsen‡§

We show that *Escherichia coli* isolates originating from Arctic birds carry antimicrobial drug resistance determinants. This finding implies that dissemination of drug-resistant bacteria is worldwide. Resistance genes can be found even in a region where no selection pressure for resistance development exists.



Data taken from: Dolejska et al. 2007, Bonnedahl et al. 2009, Hernandz et al. 2013, Stedt et al. 2015



## Dissemination of Resistai into

Maria Sjölund,\* Jorge Hernande Gunilla Cederbra Gunnar Kahlmete

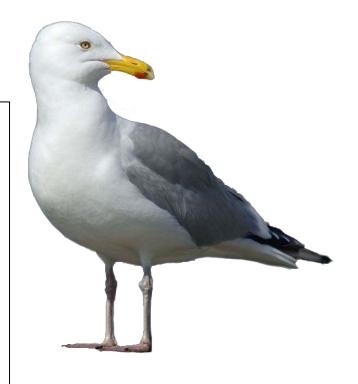
We show that *Escheri* Arctic birds carry antimic nants. This finding implies tant bacteria is worldwide. even in a region where no development exists.

Data taken from: Dole

Utqiaģvik Data SIO, NOAA, U.S. Navy, NGA, GEBCO Google Ea mage Landsat / Copernicus Image IBCAO Data LDEO-Columbia, NSF, NOAA

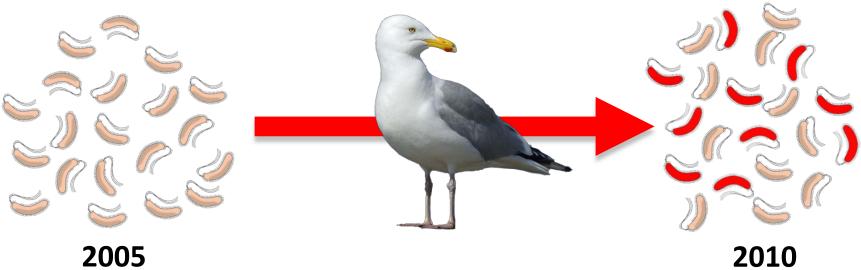


## Dissemination of Multidrug-Resistant Bacteria


Maria Sjölund,\* Jorge Hernande Gunilla Cederbra Gunnar Kahlmete

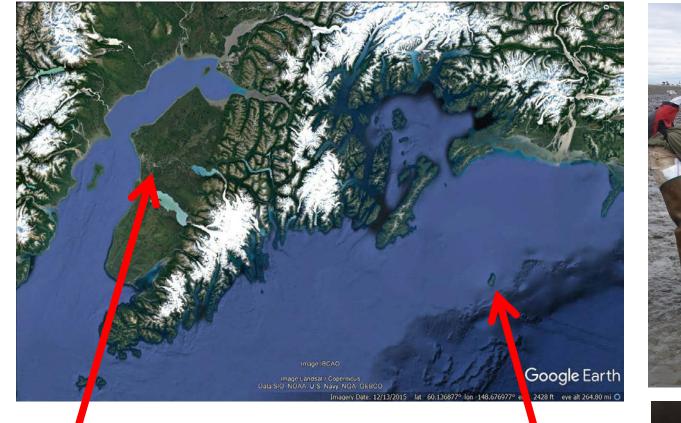
We show that *Escher*. Arctic birds carry antimic nants. This finding implies tant bacteria is worldwide. even in a region where no development exists.

Data taken from: Dole


Extended-Spectrum β-Lactamases in *Escherichia coli* and *Klebsiella pneumoniae* in Gulls, Alaska, USA

To the Editor: Resistance to  $\beta$ -lactam antibacterial drugs has spread rapidly, particularly through the CTX-M  $\beta$ -lactamase enzymes (CTX-M) (1). Although CTX-Ms are geographically widely distributed, reports of extended-spectrum  $\beta$ -lactamase (ESBL) dissemination are few from remote regions.



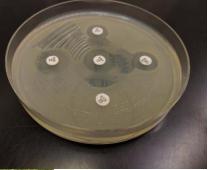

l. 2013, Stedt et al. 2015
















### **Middleton Island**







|                              |                | Number of compounds<br><i>E. coli</i> resistant to: |    |   |   |   |   |   |   |   |    |
|------------------------------|----------------|-----------------------------------------------------|----|---|---|---|---|---|---|---|----|
| Location                     | Isolates (n =) | 1                                                   | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Kenai Peninsula<br>(urban)   | 55             | 4                                                   | 14 | 4 | 3 | 1 | 1 | 2 | 1 | 0 | 0  |
| Middleton Island<br>(remote) | 60             | 2                                                   | 2  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |



|                              |                | Number of compounds<br><i>E. coli</i> resistant to: |    |   |   |   |   |   |   |    |    |             |
|------------------------------|----------------|-----------------------------------------------------|----|---|---|---|---|---|---|----|----|-------------|
| Location                     | Isolates (n =) | 1                                                   | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9  | 10 |             |
| Kenai Peninsula<br>(urban)   | 55 🤇           | 4                                                   | 14 | 4 | 3 | 1 | 1 | 2 | J | >0 | 0  | 30/55 = 55% |
| Middleton Island<br>(remote) | 60             | 2                                                   | 2  | Ð | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 5/60 = 8%   |

\*\*\*significant Kenai Peninsula vs Middleton Island, P value
<0.0001, two-tailed Fisher's exact test</pre>



|                              |                |   | Number of compounds<br><i>E. coli</i> resistant to: |   |   |   |   |   |               |   |    |             |
|------------------------------|----------------|---|-----------------------------------------------------|---|---|---|---|---|---------------|---|----|-------------|
| Location                     | Isolates (n =) | 1 | 2                                                   | 3 | 4 | 5 | 6 | 7 | 8             | 9 | 10 |             |
| Kenai Peninsula<br>(urban)   | 55             | 4 | 14                                                  | 4 | 3 | 1 | 1 | 2 | $ \mathbf{F}$ | 0 | 0  | 12/55 = 22% |
| Middleton Island<br>(remote) | 60             | 2 | 2                                                   | 1 | 0 | 0 | 0 | 0 | 0             | 0 | 0  | 1/60 = 2%   |

\*\*\*significant Kenai Peninsula vs Middleton Island, P value
<0.001, two-tailed Fisher's exact test</pre>





| Kenai Peninsula                         | 55 | 4 14 4 3 1 1 2 1 0 0 | 12/55 = 22% |
|-----------------------------------------|----|----------------------|-------------|
| (urban)<br>Middleton Island<br>(remote) | 60 | 2 2 1 0 0 0 0 0 0 0  | 1/60 = 2%   |

\*\*\*significant Kenai Peninsula vs Middleton Island, P value
<0.001, two-tailed Fisher's exact test</pre>





### Pilot project on ABR bacteria dispersal by migratory birds

- sample at two remote areas: outer Yukon-Kuskokwim Delta and Middleton Island
- compare prevalence of ABR *E. coli* in species:
  - that use anthropogenically influenced habitats in winter and remote areas in summer
     Outer Y-K Delta
  - 2. that inhabit remote areas year round



- 1. higher prevalence of antibiotic resistant *E. coli* in species that winter in anthropogenically influenced habitats as compared to sympatric species that inhabit remote areas of North America year-round
- 2. equally low prevalence of antibiotic resistant *E. coli* in species with contrasting life histories
- 3. equally high prevalence of antibiotic resistant bacteria in species with contrasting life histories





- 1. higher prevalence of antibiotic resistant *E. coli* in species that winter in anthropogenically influenced habitats as compared to sympatric species that inhabit remote areas of North America year-round
- 2. equally low prevalence of antibiotic resistant *E. coli* in species with contrasting life histories
- 3. equally high prevalence of antibiotic resistant bacteria in species with contrasting life histories





- 1. higher prevalence of antibiotic resistant *E. coli* in species that winter in anthropogenically influenced habitats as compared to sympatric species that inhabit remote areas of North America year-round
- 2. equally low prevalence of antibiotic resistant *E. coli* in species with contrasting life histories
- 3. equally high prevalence of antibiotic resistant bacteria in species with contrasting life histories





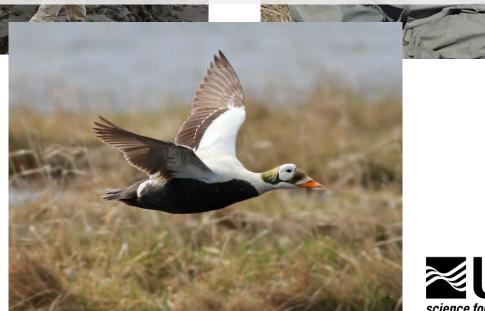
- 1. higher prevalence of antibiotic resistant *E. coli* in species that winter in anthropogenically influenced habitats as compared to sympatric species that inhabit remote areas of North America year-round
- 2. equally low prevalence of antibiotic resistant *E. coli* in species with contrasting life histories
- 3. equally high prevalence of antibiotic resistant bacteria in species with contrasting life histories





## **Results: Outer Yukon-Kuskokwim Delta...**




## **Results: Outer Yukon-Kuskokwim Delta...**

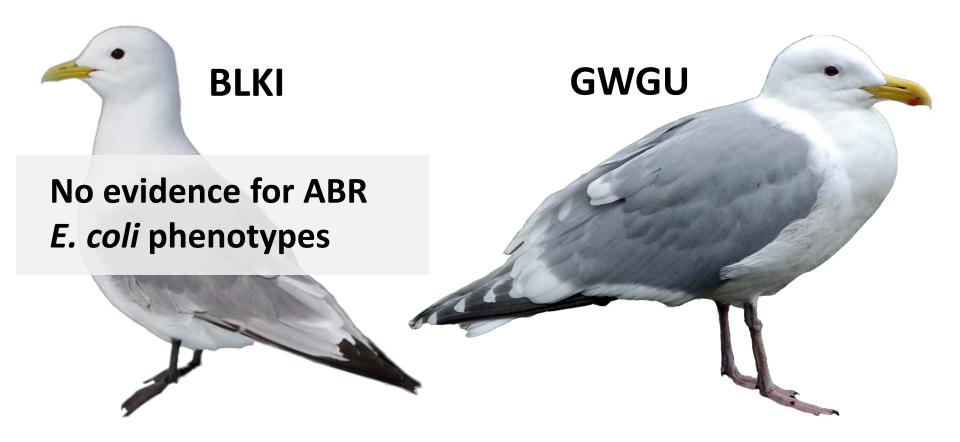




No evidence for antibiotic resistant E. coli phenotypes








## **Results: Middleton Island...**





## **Results: Middleton Island...**





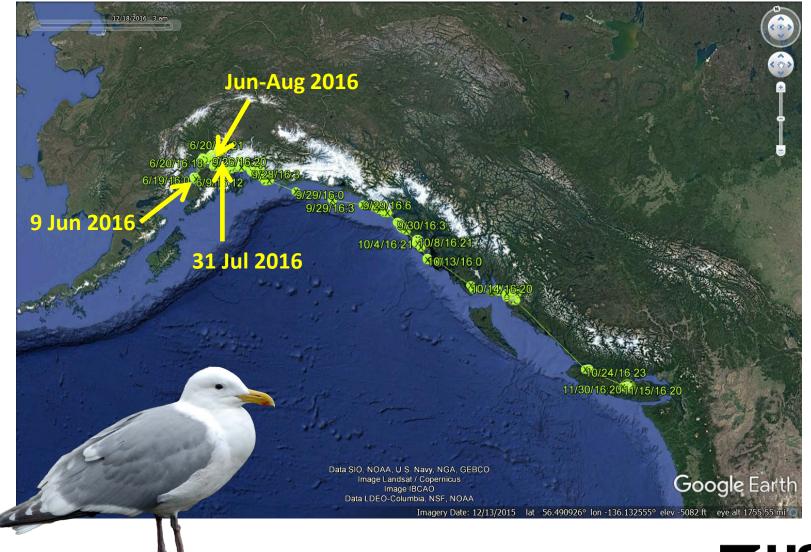
## **Results: Middleton Island...**



BLKI

### No evidence for ABR *E. coli* phenotypes






- 2/89 ABR *E. coli* strains in random sample
  - 12 ABR strains among 65 samples tested using selective screen















Antimicrobial Resistance in Generic *Escherichia coli* Isolates from Wild Small Mammals Living in Swine Farm, Residential, Landfill, and Natural Environments in Southern Ontario, Canada $^{\nabla}$ 

Samantha E. Allen,<sup>1</sup> Patrick Boerlin,<sup>1</sup> Nicol Janecko,<sup>2</sup> John S. Lumsden,<sup>1</sup> Ian K. Barker,<sup>1</sup> David L. Pearl,<sup>2</sup> Richard J. Reid-Smith,<sup>2,3</sup> and Claire Jardine<sup>1\*</sup>

Department of Pathobiology<sup>1</sup> and Department of Population Medicine,<sup>2</sup> Ontario Veterinary College, University of Guelph, Guelph, Guelph, Ontario, Canada, and Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada<sup>3</sup>

#### Antibiotic-Resistant Bacteria in Wild Primates: Increased Prevalence in Baboons Feeding on Human Refuse

ROSALIND M. ROLLAND,<sup>1</sup> GLENN HAUSFATER,<sup>2†</sup> BONNIE MARSHALL,<sup>1</sup> and STUART B. LEVY<sup>1,3\*</sup>

Departments of Molecular Biology and Microbiology<sup>1</sup> and Medicine,<sup>3</sup> Schools of Medicine and of Veterinary Medicine, Tufts University, Boston, Massachusetts 02111, and Section of Neurobiology and Behavior, Division of Biological Sciences, Cornell University, Ithaca, New York 14853<sup>2</sup>

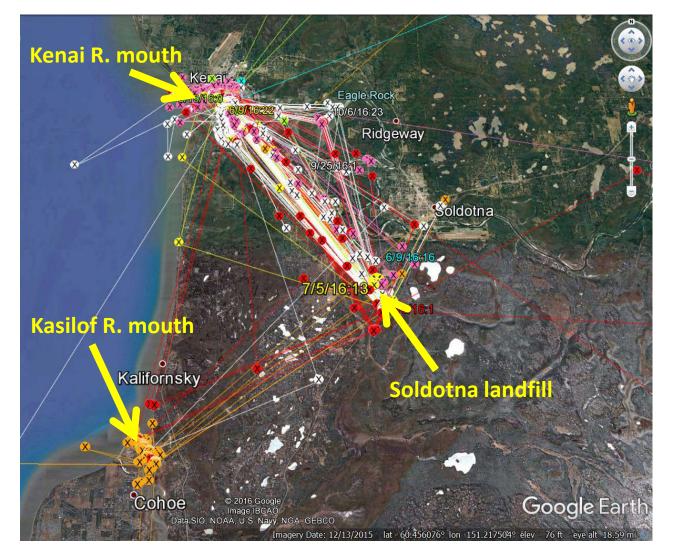


science for a changing world

#### Local scale – research questions

- 1. How does prevalence of ABR *E. coli* in gulls at the mouths of the Kenai and Kasilof rivers compare to sites at the Soldotna landfill and the Upper Kenai River?
- 2. Is there evidence that ABR *E. coli* are dispersed by gulls between the Soldotna landfill and areas where people participate in personal-use fisheries?
- 3. Is there evidence for a seasonal peak in prevalence of ABR *E. coli* in gulls in the Kenai and Kasilof river watersheds and how does that relate in space/time with personal-use fisheries?






Local scale – research activities

- Mark 15 gulls with satellite transmitters at Soldotna landfill
- Sample gull feces at Upper Kenai River, Lower Kenai River, Lower Kasilof River, and Soldotna landfill during summer
- Sample exterior and interior surfaces of fish harvested in personal-use fisheries



#### Preliminary satellite transmitter data (n = 7)





Regional scale – research questions

- What is the relationship between the population of local human communities and the prevalence of ABR *E. coli* in spatially proximate populations of large gulls in Alaska?
- 2. Is there evidence for dispersal of ABR *E. coli* among gull populations within Alaska?





Regional scale – research activities

- Sample gull feces at Adak, Anchorage, Bethel, Cold Bay, Nome, Soldotna, Unalaska, and Utqiagvik in June and August of 2016/2017
- Phenotypically/genetically characterize resultant *E.* coli isolates
- Instrument large gulls at each location with satellite transmitters





Intercontinental scale – research questions

- 1. Do large gulls make migratory movements between East Asia and Alaska that could facilitate inter-hemispheric dispersal of ABR *E. coli* and other infectious agents?
- 2. Is there genetic evidence for inter-hemispheric dispersal of ABR *E. coli* in large gull populations sampled in Alaska and East Asia?





Intercontinental scale – research activities

- Sample gull feces at locations in Japan and South Korea in June and August of 2017
- Phenotypically/genetically characterize resultant *E. coli* isolates
- Apply satellite transmitters to large gulls at locations throughout Alaska



# **Questions?**